How Bench Testing has Aided Optimization of Bifurcation PCI

John Ormiston

MBChB, FRACP, FRACR, FCSANZ, FAPSIC, FACC, FRCP, ONZM Medical Director Intra Professor, University of Auckland School of Medicine Interventional Cardiologist Auckland New Zealand

> TCT AP April 29th 2019 Presentation Theatre 2, Level 1 10.38-10.46 8mins

Disclosure Statement of Financial Interest

John Ormiston has a potential conflict of interest

Advisory board and minor honoraria Boston Scientific

I will focus on the Provisional Strategy

-optimal deployment and postdilatation of a single stent in a bifurcation

I became interested in bench testing in 1994 A manufacturer provided this photograph showing a round ostium without distortion following side-dilatation

To our surprise when we dilated through the side of stents we showed (for the first time) that there was distortion

Ormiston J Am Coll Cardol 1998;31:18A.

Ormiston. Cathet Cardiov Interv 1999;47:258

Protrudes struts into to SB

Steps of a provisional bifurcation strategy

Place a wire in MB and in SB Deploy single stent sized to the distal MV across SB

The stent in the proximal main vessel is mal-apposed

3. First POT. Short post-dilating balloon sized to the proximal MV is advanced up to the carina and inflated

After POT the stent in the proximal vessel is no longer mal-apposed

In addition, POT facilitates distal wire crossing from the stent lumen to the SB

With good stent apposition, wire passage outside the stent is less likely

4. The side-branch is dilatated ideally after distal wire cross (checked by OCT)

Why does a balloon sometimes fail to cross to the SB

abluminal wire passage (rewire)

Catheter tip damage which is common (Change balloon)

Barkholt , Ormiston , Cath Cardiov Int 2017

4. Side-branch is dilatation after distal wire cross causes stent distortion

Protrudes struts into to SB

5. Kissing balloon post-dilatation

Corrects malapposition and metal narrowing without altering SB ostial size or strut protrusion to SB

But causes eccentricity of the proximal stent

Proximal POT after KBPD restores proximal stent circularity

Proximal Final POT after KBPD

Does <u>not</u> reduce SB ostial size

SB

If the wire crosses proximally, SB balloon dilatation causes a metallic carina

After proximal cross and metallic carina formation, POT across the SB pushes the metallic carina and reduces the SB stent ostial size

After provisional stenting with proximal re-wiring and SB dilatation Final POT across SB reduces SB ostial size Final POT proximal to the SB retains SB ostial size *

Investigation plan

Final POT across the SB causes the SB ostium to narrow

Lene Nyhus Andreasen

D: Pooled final POT analysis 10 8 Sec. 1 -----(Q) - 0 Ľ rØ, -10 Change in SB cell opening -4% [-1;-6%] -20 -30 -43% [-32;-58%] -40 -50 -60 -70 Final POT Final POT proximal across

Conclusions

For provisional stenting, the optimal post-dilatation strategy is KBPD followed by final POT proximal to the side-branch

Final POT across the SB causes reduction in SB ostial area

Ideally wire crossing to the SB should be distally close to the carina (can be checked by OCT)